

Binocular Vision Simplified, the role of Microprisms in our digital world

1

Learning Objectives

2

Acknowledgement

3

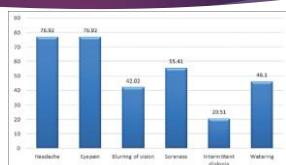
Normative values vs. Symptomology

TABLE 1. NORMATIVE VALUES¹²⁹⁻¹³²

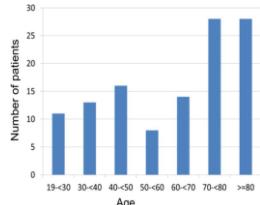
NORMS IN MONOCULAR VISUAL TESTING		
Test	Expected Finding	Standard Deviation
Distance cover test	1 convergence	±2°
Near cover test	0 convergence	±1°
Distance visual acuity (NVA) (MPs)	20/20	±0.5 log units
Near accommodative or near focus (NPF)	20/20	±0.5 log units
Distance heterophoria (DHC) (prism diopters)	1 prism diopter	±0.5 prism diopters
Distance heterophoria (DHC) (prism diopters)	1 prism diopter	±0.5 prism diopters
Distance heterophoria (DHC) (prism diopters)	1 prism diopter	±0.5 prism diopters
Near heterophoria (NHC) (prism diopters)	1 prism diopter	±0.5 prism diopters
Near heterophoria (NHC) (prism diopters)	1 prism diopter	±0.5 prism diopters
Near heterophoria (NHC) (prism diopters)	1 prism diopter	±0.5 prism diopters
NORMS IN SMOOTH VERGENCE TESTING (BLINK/BREAK/RECOVERY)		
Test	Expected Finding	Standard Deviation
Distance house-out	0.6/1.0/0.8°	±0.1/0.1/±0.1
Distance house-in	0.7/1.1/0.8°	±0.1/0.1/±0.1
Near house-out	1.2/2.0/1.5°	±0.2/0.2/±0.2
Near house-in	1.2/2.0/1.5°	±0.2/0.2/±0.2
NORMS IN STEEP VERGENCE TESTING IN 6-12 YEAR OLDS (BREAK/RECOVERY)		
Test	Expected Finding	Standard Deviation
Distance house-out	0.7/1.0°	±0.1/0.1°
Distance house-in	0.7/1.0°	±0.1/0.1°
NORMS IN STEEP VERGENCE TESTING IN ADULTS (BREAK/RECOVERY)		
Test	Expected Finding	Standard Deviation
Distance house-out	1.7/2.4°	±0.2/0.2°
Distance house-in	1.7/2.4°	±0.2/0.2°
Near house-out	1.9/3.0°	±0.2/0.2°
Near house-in	1.9/3.0°	±0.2/0.2°

4

Symptomology


Various studies conclude:

- ▶ Headaches: Between 15% and 80% of the population complain of headaches.
- ▶ Digital Eye Strain (Eyestrain): Approximately 65% of Americans reporting symptoms (some reports up to 80%).
- ▶ Neck and Shoulder Pain: An annual prevalence of neck pain affects more than 30% of U.S. adults.
- ▶ Light Sensitivity (Photophobia): Estimates range from 5% to 20% of the population.
- ▶ Dizziness: Affects about 15% to 20% of adults yearly.
- ▶ Symptomatic dry eye: 6.8% to over 20% depending on the population studied.


5

A closer look at CI (convergence insufficiency)

Studies suggest that between 2% and 13% of the U.S. population has convergence insufficiency (CI), ranging from 1.7% to 33%. Study consensus is around 5%.

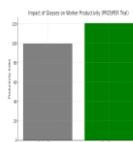
6

The Incidence and Clinical Characteristics of Adult-Onset Convergence Insufficiency
Raif Chadban 3,A, Jennifer M Martinez 1,A, Nancy N Diehl 2,B, Brian G Mihnev 3,C

7

Too much paper work

8


Simplified questionnaire for discovery

- ▶ 7 simple questions, rated by severity

9

Economic & Productivity Impact

- ▶ 2025, VSP finds nearly 3 out of 4 of employees struggle with digital eye strain, 59% say it affects their productivity
- ▶ PROSPER trial: 21% output gain with glasses
- ▶ Workplace efficiency tied to binocular stability
- ▶ Better BV will improve patient comfort and efficiency

10

Binocular Test Issues

- ▶ Issue #1: time restraints
- ▶ Issue #2: Inaccuracy of testing and recording
- ▶ Issue #3: Prism calculations
- ▶ Issue #4: Confidence in the actual prescription
- ▶ Paradigm shift: Does "normal" mean doing nothing?

11

Low-Add Boost Lenses

- ▶ Concept Overview: Eases accommodative effort at near
- ▶ Power boost range: +0.40 to +0.75 D add
- ▶ Examples: Essilor Eyezen, Zeiss Digital, Hoy Sync III, Shamir Relax, VSP Unity Via/techShield
- ▶ Best use for Pre-presbyopic patients with long hours of close work
- ▶ Mixed evidence in peer-reviewed trials
- ▶ Ignores: convergence influence AC/A ratio

12

Blue Light Filtering Lenses

- ▶ Commonly prescribed to reduce symptoms of DVS
- ▶ Does not address any issues with BV
- ▶ More contradictory study conclusions versus positive conclusions.
- ▶ Provides little or no benefit for cataract or retinal prevention issues
- ▶ Intended to reduce digital strain and aid circadian rhythm.
- ▶ Current evidence suggest Blue light filtering lenses not to be superior over standard lenses in reducing digital eye strain

13

Micro-Prisms

- ▶ Microprisms (typically less than 1–2 prism diopters)
- ▶ Subtly shifts images to reduce the effort required for binocular fusion during near tasks.
- ▶ Shifts demand toward comfort zone, improving reading speed and comprehension by easing vergence demand.
- ▶ **Issue:** How do you determine the adequate amount of prism to prescribe to get improvement in comfort or a therapeutic benefit?

14

New category: Contoured Prism + Accommodative Boost

- ▶ The benefit of convergence relief with the addition of BI prism at intermediate and near, plus, accommodative relief.
- ▶ Contoured or variable prism: progressively more BI prism at near vs distance
- ▶ Evidence: Reduced Symptomology and increasing reading speed

15

Reviewing AC/A ratio

- ▶ AC/A ratio (Accommodative Convergence to Accommodation ratio) quantifies how much convergence (in prism diopters) occurs per diopter of accommodation.
- ▶ Formula:

$$AC/A = PD \text{ (cm)} + \text{Near phoria } (\Delta) - \text{Distance phoria } (\Delta) / \text{Near stimulus}$$
- ▶ Clinical Interpretation:
 - ▶ Normal AC/A: ~4:1 to 5:1
 - ▶ High AC/A: >6:1 (often in convergence excess)
 - ▶ Low AC/A: <3:1 (often in convergence insufficiency)

16

Vision Therapy + lens Therapy

- ▶ Critically important for those patients that can benefit from it.
- ▶ Develop a referral network
- ▶ Standard Boost lenses and Boost lenses with contoured or variable prism can be an adjunct or place holder for VT.
- ▶ Prism reduces vergence stress
- ▶ Boost lenses stabilize accommodation
- ▶ Therapy increases convergence dynamics

17

Clinical Decision Pathway

- ▶ Step 1: Screen/Testing
- ▶ Step 2: Trial prism or boost lenses
- ▶ Step 3: Escalate to contoured prism or OBVAT (Office Based Vergence/ Accommodative Therapy)
- ▶ Step 4: Re-assess

18

Case Study: I seem to see 4 headlights in cars when I know there are only 2!"

- ▶ "Routine exam"
- ▶ 4 PD vertical phoria and significant exophoria.
 - ▶ Treat vertical first then address the horizontal component
- ▶ Part 2, same patient: "I get headaches and neck strain when I am working at the computer after 2 hrs"
 - ▶ Micro-prism testing results: 2 BI contoured prism, 6.5 PD exophoria at distance, 14.2 PD Exophoria at near with an AC/A 1.90 (Low AC/A: <3:1, convergence insufficiency)

Gave up contact lenses in exchange for glasses with contoured prism.

19

Case Study #2: My kid is putting in " A" level effort at school but only getting "C" level results

- ▶ "I hate school. I'm a terrible student. But, I try really hard."
- ▶ 20/20 sc OD and OS, 16 yo male in for first eye exam
- ▶ Rx: Plano OU, Phorias 8 BI D/15 BI N, AC/A <3:1, NRA/PRA decreased and variable
- ▶ Plan: Contoured Prism glasses for study and initial treatment and Urgent referral for VT.

20

Case Study #3 the Non-Adapt

- ▶ Progressive Lens Non-Adapts: Presbyopes have less ability to converge when they start to lose accommodation. Leads to discomfort or non-adapt issues with additional plus pushing the AC/A ratio into convergence insufficiency.
- ▶ 46 yo female CC: tried progressives and hated them. Just started to need glasses for reading about 5-6 years ago. Was prescribed her first PAL and hasn't been back to the eye doctor since.
- ▶ Low hyperope with AC/A 4:1
- ▶ 12+ hours on the computer or phone and travels for work on a monthly basis.

21

Key Take-Home Messages

- ▶ Small BV gains → large productivity benefits
- ▶ Evidence strongest for prism & VT
- ▶ Boost lenses with variable/contoured prism is very promising. BUT, more research needed

22

Thank You!

Any Questions?

23