

On behalf of Vision Expo, we sincerely thank you for being with us this year.

Vision Expo Has Gone Green!

We have eliminated all paper session evaluation forms. Please be sure to complete your electronic session evaluations online when you login to request your CE Letter for each course you attended! Your feedback is important to us as our Education Planning Committee considers content and speakers for future meetings to provide you with the best education possible.

1

Jesse Walters, ABOM

- No Financial interests to disclose
- Account Representative and Optical Trainer for an independent OD owned national lab: Summit Optical
- CE Author, content editor and advisor for the Optical Training Institute
- CE contributor for Quantum Optical
- All relevant relationships have been mitigated

2

Common Sense Compensation

Jesse Walters, ABOM

1 hour ABO Technical Level III

3

Learning Objectives

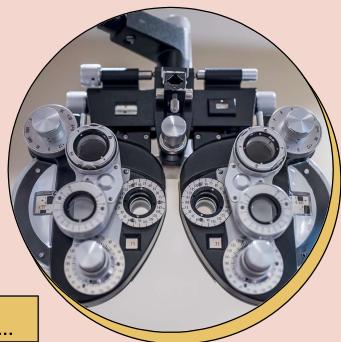
Why does the prescription need to be changed?
How do the position of wear measurements change the final prescription?
When is it most important to utilize?
What potential problems can occur?

Calculating Prescription Behavior	Verifying Compensated Lenses																									
Effective Power Formula Compensated Power Formula Martin's Tilt Formula	Reading Measured Power Evaluating Compensations																									
Alignment	MEASURED POWER																									
OC Height Prism Compensation Adjustments	<table border="1"> <thead> <tr> <th></th> <th>Left</th> <th>Right</th> </tr> <tr> <th>Issue</th> <th>Power</th> <th>Issue</th> <th>Power</th> </tr> </thead> <tbody> <tr> <td>Distance</td> <td>-1.88</td> <td>-2.43</td> </tr> <tr> <td>Abs</td> <td>153</td> <td>6</td> </tr> <tr> <td>Near</td> <td>-1.86</td> <td>-2.23</td> </tr> <tr> <td>Abs</td> <td>154</td> <td>1</td> </tr> <tr> <td>From</td> <td>4.72</td> <td>4.61</td> </tr> <tr> <td></td> <td>78.02</td> <td>257.89</td> </tr> </tbody> </table>		Left	Right	Issue	Power	Issue	Power	Distance	-1.88	-2.43	Abs	153	6	Near	-1.86	-2.23	Abs	154	1	From	4.72	4.61		78.02	257.89
	Left	Right																								
Issue	Power	Issue	Power																							
Distance	-1.88	-2.43																								
Abs	153	6																								
Near	-1.86	-2.23																								
Abs	154	1																								
From	4.72	4.61																								
	78.02	257.89																								
	Potential Problems																									
	Record Keeping Prescription Evaluation Identifying Digital Design																									

4

Compensation Defined:

A compensated prescription is any intentional change in lens power or prism alignment from the doctor's original Rx with the objective to more accurately correct vision through a pair of glasses.



5

The Doctor's Refraction vs Real World Wear

An optometrist's refraction utilizes a small round lens sitting perpendicular to the eye at a fixed distance having the patient looking directly in front of them at a well-lit chart mounted at 20 feet.

The prescription is written from these carefully controlled conditions and then...

6

To Deliver the Promised Prescribed Rx:

...Every patient is fit into small, round, flat frames that are adjusted to sit at the exact distance of the phoropter.

7

Medical Device vs Fashion Accessory

The prescription is filled in lenses of all different sizes, shapes and curves...

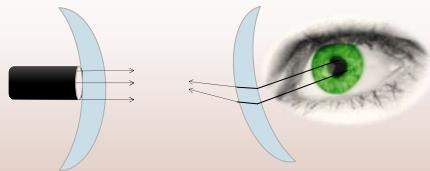
... mounted into frames that fit closer or farther from the eye with any extreme of tilt, face-form or wrap.

8

“

The **Effective Power** is the actual correction viewed by a patient as a result of how a lens is positioned in front of the eye.

”



9

When the compensated lens is then mounted perpendicular at a fixed distance in a lensometer it will read differently...

The patient is viewing the prescribed Rx as a result of how the lens is positioned in front of the eye.

10

Vertex Distance

Vertex refers to the distance from the eye to the back side of the lens.

A lens will always gain plus power as it moves away from the eye and loses plus power (increasing minus power) as it becomes closer.

11

Effective Power Formula

$$D_e = \frac{D_l}{(1 + dD_l)}$$

D_e = new power experienced by the wearer
 D_l = original lens power
 d = change in vertex distance in METERS
 If the lens is moved towards the eye "d" is positive
 If the lens is moved away "d" is negative

Demonstrates the effective sphere power change as fitting vertex distance is increased or decreased from the refracted vertex

12

Example:

Rx: $-7.50 - 2.25 \times 176$
Refracted at 13mm
Fitting vertex measured at 18mm
What is the patient's experienced effective power?

- Find the powers in the two major meridians
 $-7.50 @ 176$
 $-9.75 @ 086$
- Calculate the vertex difference in *meters*
13 to 18 is a change of 5mm
5mm = 0.005 meters = **-0.005m** change in vertex
- The vertex distance is moving *further* so this number will be expressed as **negative**
- Solve the equation...

$$De = \frac{Dl}{(1 + dDl)}$$

De = new power experienced by the wearer
Dl = original lens power
d = change in vertex distance in METERS
(If the lens is moved towards the eye "d" is positive.
If the lens is moved away "d" is negative).

13

Effective Power Formula

What's going on here?

- o Minus lenses lose minus effective power as vertex increases
- o The patient was prescribed and filled an Rx written at a refracted distance of 13mm, then wears them 5mm further than tested
- o The Rx experienced by the patient is weaker than prescribed
- o Larger lens powers and/or larger changes in fitting distances will change the effective power more dramatically
- o This demonstrates a need to compensate the Rx to deliver the exam acuities...

Rx prescribed & fabricated:

$$-7.50 - 2.25x 176$$

$$De = \frac{-7.50}{1+ [(-0.005)(-7.50)]} = \frac{-7.50}{1.0375} = -7.2289$$

$$De = \frac{-9.75}{1+ [(-0.005)(-9.75)]} = \frac{-9.75}{1.04875} = -9.2968$$

Reassemble the new Effective Power

First # is the new sphere, then find the difference between them for the new cylinder power, keep the axis the same

Rx experienced by the patient as a result of vertex variance:

$$-7.23 - 2.07 \times 176$$

14

$D_c = \frac{D_l}{(1 - dD_l)}$

D_c = compensated power (what will be ordered)
D_l = original prescribed power
d = change in vertex distance in METERS
(If the lens is moved towards the eye "d" is positive. If the lens moves away, "d" is negative).

Compensated Power Formula

15

Example:

Prescribed Rx: +8.50 -0.50 x 006
 Refracted vertex was 15mm
 Measured fitting vertex is 11mm
 What should the lens compensation be?

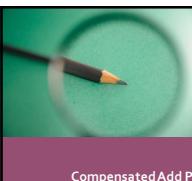
1. Find the powers in the two major meridians
+8.50 @ 006
+8.00 @ 096
2. Calculate the vertex difference in *meters*
 15 to 11 is a change of 4mm
 4mm= **0.004m** change in vertex
 The vertex distance in moving *closer* so this number will be expressed as *positive*
3. Solve the equation...

16

Compensated Power Formula

What's going on here?

- Plus lenses lose effective plus power as vertex decreases
- The patient's prescribed power must be compensated and fabricated with a stronger plus power
- The Rx experienced by the patient is weaker than compensated, so the effective power translates as the original written Rx
- Larger lens powers and/or larger changes in fitting distances will change the effective power more dramatically


Rx prescribed:
 $+8.50 - 0.50 \times 006$

$De = \frac{+8.50}{1 - [(0.004)(8.50)]} = \frac{+8.50}{0.966} = +8.7991$

$De = \frac{+8.00}{1 - [(0.004)(8.00)]} = \frac{+8.00}{0.968} = +8.2644$

Reassemble the new Compensated Power
 First is the new sphere, then find the difference between them for the new cylinder power, keep the axis the same
 Rx experienced by the patient will match the prescribed Rx if fabricated as this compensated Rx adjusted for the fitting vertex:
 $+8.80 - 0.53 \times 006$

17

Calculating Compensated Add Powers

Lens Compensations Also Adjust Add powers

Compensated Add Power

Calculated as the difference between the distance and near measured powers

Right: $+3.56 - (+1.25) = +2.31$

Left: $+2.25 - (-0.25) = +2.46$

Often the compensated add is what is laser engraved under the temporal progressive watermark

Because add powers are at the bottom of the lens, they sit at an increased vertex which often causes plus powers to be weakened

Rx DATA					
	Right	Left	Up	Down	Bottom
Right	1.25	-1.25	175		
Left	-0.25	-0.50	178		
				2.50	32.50
				2.50	32.50

MEASURED POWER						
	Left			Right		
	Distance	Intermediate	Near	Distance	Intermediate	
Right	-0.25	-0.50	178	1.25	-1.25	175
Left			Near			Near
	2.21	0.48	178	3.56	-1.27	178
	Men	0.00	0.00	Men	0.00	0.00

18

Measuring Vertex
First, pre-adjust nose pads, verify patient comfort

PD Ruler Distometer Tablet Apps Digital Devices

19

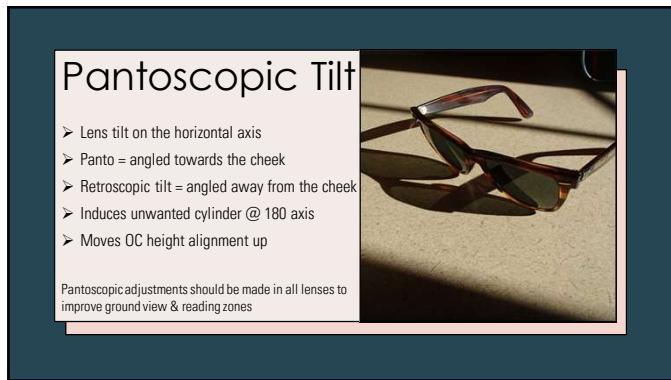


Frame Wrap and Lens Tilt

C
R
E
A
T
E

Unwanted cylinder power on the tilt axis

20



Pantoscopic Tilt

- Lens tilt on the horizontal axis
- Panto = angled towards the cheek
- Retrosopic tilt = angled away from the cheek
- Induces unwanted cylinder @ 180 axis
- Moves OC height alignment up

Pantoscopic adjustments should be made in all lenses to improve ground view & reading zones

21

Measuring Panto

Proper Adjustment

- Always pre-adjust the frame
- Retrosopic tilt should be adjusted to positive panto
- Panto must be measured as worn on the patient

Measuring devices

- All devices measure tilt in relation to the ground, not the eye
- Getting a patient's head and posture accurate is imperative
- Aim for panto between 5 to 10 degrees

22

Frame Wrap

Measured in Degrees of Tilt on the Vertical Axis

Frame Wrap Panoramic Angle Face-Form Z-Tilt

Induces Unwanted Horizontal Prism

Induces Unwanted Cylinder @ 090-Degree Axis

23

Measuring Wrap

Wrap Angle in Degrees

Measured with protractor, wrap layouts, or manual devices
Digital measuring devices measure wrap value, some need dark lenses removed
Wrap angle can be measured without the patient wearing the frame

Ophthalmic Wrap 0-11° standard range- important for higher powers and corrects unwanted cyl vs. Sport Wrap
12-30° high wrap- important for all Rxs and corrects for cyl and prism error

24

Martin's Tilt Formula

$$S_1 = S[1 + (sina)^2/2n]$$

$$C_1 = S_1(tana)^2$$

$$f(x) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x) = \lim_{h \rightarrow 0} \frac{1}{h} \frac{(x+h)^2 - x^2}{h}$$

$$f(x) = \lim_{h \rightarrow 0} \frac{1}{h} \frac{2xh + h^2 - x^2}{h}$$

$$f(x) = \lim_{h \rightarrow 0} \frac{1}{h} \frac{2xh + h^2}{h}$$

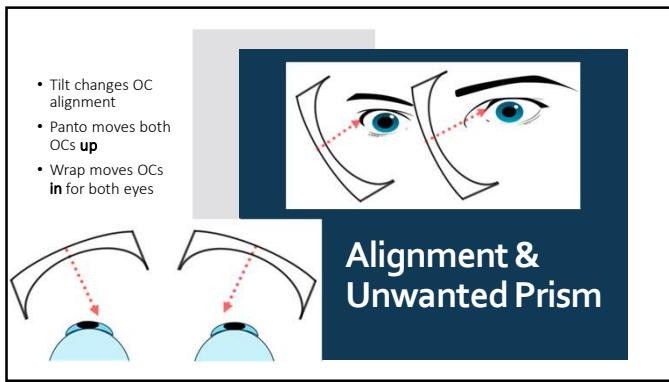
$$f(x) = \lim_{h \rightarrow 0} \frac{1}{h} (2x + h)$$

$$f(x) = 2x$$

25

26

$S1 = S[1 + (\sin a)^2 / 2n]$
 $C1 = S1(\tan a)^2$

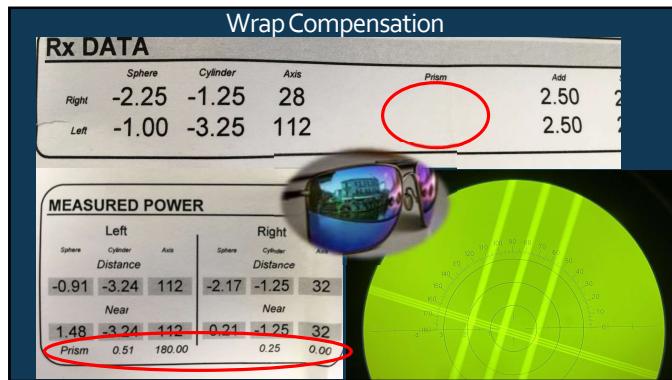

S1= new sphere power
S= original sphere power
a= degrees of tilt
n= index of refraction of lens material
C1= induced cylinder power on the axis of rotation

Example:

Rx: +4.00 sph OU
Patient chose a high-wrap safety frame which measures 25° frame wrap and ordered in a 1.53 Trivex lens.
Using Martin's Tilt Formula, what is the effective power they will experience without lens compensation?

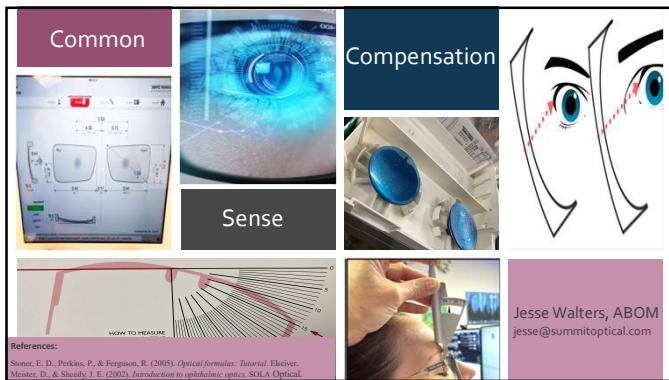
27

28



29

30



Custom vs. Default Position of Wear Measurements
Digital lenses are often compensated whether or not measurements are provided
Custom values <ul style="list-style-type: none">Measured vertex, panto, and wrap of pre-adjusted frameManual and digital devices are availablePersonalized for each individualAdds value to the patient experienceHighly valuable for higher prescriptions or frames fit outside normal parameters (i.e. high wrap styles)
Default Values <ul style="list-style-type: none">Uses average adjustment values of ophthalmic framesImproves patient's visual experience based on the common differences between refracted and as-worn lens powerNo need for understanding of measurement devices or extra time in lens ordering

31

32